
1

CS-200
Computer Architecture

—
Part 4c. Instruction Level Parallelism

Pipelining

Paolo Ienne
<paolo.ienne@epfl.ch>

2

Pipelining

t t+1 t+2 t+3 t+4 t+5
i

i+1

i+2

i+3

stage
1

stage
2

stage
3

stage
1

stage
2

stage
3

stage
1

stage
2

stage
3

stage
1

stage
2

stage
3

stage 1 stage 2 stage 3

t t+1
i

i+1

Pipeline
Registers

3

Practical Pipelining

• Latency

• Throughput

origpipepipeCLKFFiNipipe fNTNTTN λλ >=⋅=+⋅=
−=

/)(max ,1..0

pipeFFiNipipe fTT =+=
−=

)(max/1
1..0

φ

pipeCLKi TT ,≅

NTT combCLKi ,≅

and

1T 2T 3T

Ideally,

3=N
But flip-flops introduce a

delay of their own…
But one might not be able
to split evenly the circuit…

4

Pipelining for Processors?

• Pipelining useful only if the activity in object needs to be
repeated many time
– We have plenty of instructions to execute!

• Pipelining needs to split the single activity in object into many
subactivities
– We have a good logical split into fetch, decode, execute, etc.

5

Example: A Simple Multi-Cycle Processor

Fetch

Decode

ALU
Store

Load

6

Example: A Simple Schedule

F D E
F D E

F D

1:

2:

3: E

FETCH
Get the instruction
to execute from the
instruction memory

EXECUTE
Perform the required
operation (including

accessing data memory in
case of loads and stores)

DECODE
Understand/decode

the instruction and get
ready for execution

7

Pipelining the Processor?

t t+1 t+2 t+3 t+4 t+5
i

i+1

i+2

i+3

F D E

F D E

F D E

F D E

stage 1 stage 2 stage 3

F D E

t t+1 t+2 t+3 t+4 t+5
i

i+1

F D E

F D E

Datapath

F

DE

Pipeline
Registers

8

No Hardware Reuse across Stages

• In a multicycle processor, some hardware components may be
shared across states:
– FETCH typically requires an adder to increment the program counter
– EXECUTE naturally needs an ALU
– They are never used at the same time, so the ALU can be used to

increment the program counter

• In a pipelined processor, there cannot be sharing across stages,
in general:
– All stages active all the time!
– Hardware needs to be replicated where appropriate

9

Two Main Problems

1. CISC vs. RISC
– Can we build equally well a pipeline for a Complex Instruction Set

Computer as for a Reduced Instruction Set Computer?
– What does that mean?!

2. Instructions are not independent
– Can we execute code correctly?

1
0

FSM vs. Pipeline

• Any path through our FSM represents the sequence of
necessary steps for the execution of an instruction

• The ordered path through the pipeline is the sequence of all
possible steps for the execution of any instruction

Fetch Decode Execute Memory Writeback

1
1

Adding Instructions to a Multi-Cycle Processor

Fetch1 Fetch2

Decode
Execute

ALU

How do we
support add?

If the sequence of steps to execute is
the same (fetch the instruction, read
registers, use the ALU, save result in
the register), we just need to an ALU

that can perform additions

xor

1
2

Adding Instructions to a Multi-Cycle Processor

Fetch1 Fetch2

Decode
Execute

ALU

How do we
support lw?

The sequence of steps
to execute is not the

same (compute address
and access memory) so
we add new steps and a

(partially) new path

Compute
Address

Access
Memory

Memory

1
3

Adding Instructions to a Pipelined Processor

Fetch Decode Execute Writeback

xor and add

How do we
support lw?

We need to
accommodate the steps
compute address and

access memory

How?!
Fetch Decode Execute Memory Writeback

Latency of add
is now five cycles!

1
4

The Importance of the ISA

Imagine that we want to have an instruction

sub 8(t4), 0(t1), 0(t2)

Read the value in memory
at the address t2 + 0

Subtract the value in memory at the address t2 + 0
from the value in memory at the address t1 + 0

and store the result in memory at the address t4 + 8

A CISC instruction!

Complex
Instruction-Set

Computer

1
5

The Importance of the ISA

Imagine that we want to have an instruction

sub 8(t4), 0(t1), 0(t2)

Fetch Decode Add Load Add Load Execute Add Store Writbk.

1
6

The Importance of the ISA

Imagine that we want to have an instruction

sub 8(t4), 0(t1), 0(t2)

Fetch Decode Add Load Add Load Execute Add Store Writbk.

sub t4, t1, t2 Latency 10
instead of 4!

1
7

Reduced Instruction-Set Computer

• Instead of imposing a huge penalty to every simple instruction by making
complex instructions possible, let’s have only similarly simple
instructions and build our programs with those:

• It turns out that it is not the only way to go, but it is a good one and we
will follow it…

sub 8(t4), 0(t1), 0(t2)

lw t3, 0(t1)
lw t5, 0(t2)
sub t3, t3, t5
sw t3, 8(t4)

1
8

Two Main Problems

1. CISC vs. RISC
– Can we build equally well a pipeline for a Complex Instruction Set

Computer as for a Reduced Instruction Set Computer?
– What does that mean?!

2. Instructions are not independent
– Can we execute code correctly?

1
9

Simple 5-Stage MIPS Pipeline

F D E M W

RF

FETCH:
get the instruction

to execute from the
instruction memory DECODE:

understand/decode
the instruction and
obtain arguments

from the register file

EXECUTE:
perform the required
operation in the ALU

(including address calculations
for loads and stores)

MEMORY:
access the data memory,
if needed (only for loads

and stores)
WRITEBACK:

write the result of the operation, if
any, to the register file

(either produced from the ALU or
received from the data memory)

2
0

The Laundry Metaphor

Ad
ap

te
d

fro
m

 P
at

te
rs

on
 &

 H
en

ne
ss

y,
©

 M
K

19
98

Sequential

Parallel
(if subtasks are
independent)

Pipelined
(if there are many

tasks to repeat)

2
1

Two Distinct Memory Interfaces

F D E M W

RF
MIPS Processor

A D
Instruction

Memory

A D
Data

Memory

Instruction
Cache

Data
Cache

Operating at once!

Main
Memory

2
2

What Is in the Pipeline Registers?

F D E M W

RF

What has just been fetched
 the instruction register

Two 32-bit operands
just read from the register file,

if any

5-bit number of the
destination register,

if any

ALU control bits

32-bit ALU result

2
3

Example of Pipelined Execution

F D E M W

RF

1000: add $r2, $r0, $r1
1004: sub $r5, $r3, $r4
1008: sw $r6, 50($r7)
1012: lw $r9, 20($r8)
1016: mul $r12, $r10, $r11

PC = 1000

before
execution

n
o
p

n
o
p

n
o
p

n
o
p

Empty pipeline: all stages at nop (no operation)

2
4

Example of Pipelined Execution

F D E M W

RF

1000: add $r2, $r0, $r1
1004: sub $r5, $r3, $r4
1008: sw $r6, 50($r7)
1012: lw $r9, 20($r8)
1016: mul $r12, $r10, $r11

PC = 1000

during
1st cycle

From instruction memory:
add $r2, $r0, $r1

n
o
p

n
o
p

n
o
p

n
o
p

2
5

Example of Pipelined Execution

F D E M W

RF

1000: add $r2, $r0, $r1
1004: sub $r5, $r3, $r4
1008: sw $r6, 50($r7)
1012: lw $r9, 20($r8)
1016: mul $r12, $r10, $r11

PC = 1004

end
1st cycle

a
d
d

$
r
2
,

$
r
0
,
 $
r
1

n
o
p

n
o
p

n
o
p

2
6

Example of Pipelined Execution

F D E M W

RF

1000: add $r2, $r0, $r1
1004: sub $r5, $r3, $r4
1008: sw $r6, 50($r7)
1012: lw $r9, 20($r8)
1016: mul $r12, $r10, $r11

PC = 1004

during
2nd cycle

From instruction memory:
sub $r5, $r3, $r4

a
d
d

$
r
2
,

$
r
0
,
 $
r
1

From Register File:
$r0 = 15
$r1 = 25

n
o
p

n
o
p

n
o
p

2
7

Example of Pipelined Execution

F D E M W

RF

1000: add $r2, $r0, $r1
1004: sub $r5, $r3, $r4
1008: sw $r6, 50($r7)
1012: lw $r9, 20($r8)
1016: mul $r12, $r10, $r11

PC = 1008

end
2nd cycle

s
u
b

$
r
5
,

$
r
3
,
 $
r
4

$
r
2

=

1
5

+

2
5

n
o
p

n
o
p

2
8

Example of Pipelined Execution

F D E M W

RF

1000: add $r2, $r0, $r1
1004: sub $r5, $r3, $r4
1008: sw $r6, 50($r7)
1012: lw $r9, 20($r8)
1016: mul $r12, $r10, $r11

PC = 1008

during
3rd cycle

From instruction memory:
sw $r6, 50($r7)

From Register File:
$r3 = 17
$r4 = 4

s
u
b

$
r
5
,

$
r
3
,
 $
r
4

$
r
2

=

1
5

+

2
5

15 + 25

n
o
p

n
o
p

2
9

Example of Pipelined Execution

F D E M W

RF

1000: add $r2, $r0, $r1
1004: sub $r5, $r3, $r4
1008: sw $r6, 50($r7)
1012: lw $r9, 20($r8)
1016: mul $r12, $r10, $r11

PC = 1012

end
3rd cycle

s
w

$
r
6
,

5
0
(
$
r
7)

$
r
2

=

4
0

$
r
5

=

1
7

-

4

n
o
p

3
0

Example of Pipelined Execution

F D E M W

RF

1000: add $r2, $r0, $r1
1004: sub $r5, $r3, $r4
1008: sw $r6, 50($r7)
1012: lw $r9, 20($r8)
1016: mul $r12, $r10, $r11

PC = 1012

during
4th cycle

From instruction memory:
lw $r9, 20($r8)

From Register File:
$r6 = 45
$r7 = 13

17 – 4

s
w

$
r
6
,

5
0
(
$
r
7)

$
r
2

=

4
0

$
r
5

=

1
7

-

4

n
o
p

3
1

Example of Pipelined Execution

F D E M W

RF

1000: add $r2, $r0, $r1
1004: sub $r5, $r3, $r4
1008: sw $r6, 50($r7)
1012: lw $r9, 20($r8)
1016: mul $r12, $r10, $r11

PC = 1016

end
4th cycle

l
w

$
r
9
,

2
0
(
$
r
8)

$
r
5

=

1
3

M
[
1
4

+

5
0
]

=

45

$
r
2

=

4
0

3
2

Example of Pipelined Execution

F D E M W

RF

1000: add $r2, $r0, $r1
1004: sub $r5, $r3, $r4
1008: sw $r6, 50($r7)
1012: lw $r9, 20($r8)
1016: mul $r12, $r10, $r11

PC = 1016

during
5th cycle

From instruction memory:
mul $r12, $r10, $r11

From Register File:
$r8 = 23

14 + 50

l
w

$
r
9
,

2
0
(
$
r
8)

$
r
5

=

1
3

M
[
1
4

+

5
0
]

=

45

$
r
2

=

4
0

To Register File:
$r2 = 40

3
3

Example of Pipelined Execution

F D E M W

RF

1000: add $r2, $r0, $r1
1004: sub $r5, $r3, $r4
1008: sw $r6, 50($r7)
1012: lw $r9, 20($r8)
1016: mul $r12, $r10, $r11

PC = 1020

end
5th cycle

m
u
l

$
r
1
2
,

$
r
1
0,

$
r
1
1

M
[
6
4
]

=

4
5

$
r
9

=

M
[
2
3

+

20
]

$
r
5

=

1
3

3
4

Example of Pipelined Execution

F D E M W

RF

1000: add $r2, $r0, $r1
1004: sub $r5, $r3, $r4
1008: sw $r6, 50($r7)
1012: lw $r9, 20($r8)
1016: mul $r12, $r10, $r11

PC = 1020

during
6th cycle

From instruction memory:
…

23 + 20

To Register File:
$r5 = 13

M
[
6
4
]

=

4
5

$
r
9

=

M
[
2
3

+

20
]

$
r
5

=

1
3

To data memory:
Addr = 64
Data = 45

write

From Register File:
$r10 = 1
$r11 = 2

m
u
l

$
r
1
2
,

$
r
1
0,

$
r
1
1

3
5

Example of Pipelined Execution

F D E M W

RF

1000: add $r2, $r0, $r1
1004: sub $r5, $r3, $r4
1008: sw $r6, 50($r7)
1012: lw $r9, 20($r8)
1016: mul $r12, $r10, $r11

PC = 1024

end
6th cycle

…

$
r
9

=

M
[
4
3
]

$
r
1
2

=

1

x

2

n
o
p

3
6

Example of Pipelined Execution

F D E M W

RF

1000: add $r2, $r0, $r1
1004: sub $r5, $r3, $r4
1008: sw $r6, 50($r7)
1012: lw $r9, 20($r8)
1016: mul $r12, $r10, $r11

PC = 1024

during
7th cycle

From instruction memory:
…

1 x 2

From data memory:
Addr = 43

read
 Data = 24

From Register File:
…

…

$
r
9

=

M
[
4
3
]

$
r
1
2

=

1

x

2

n
o
p

3
7

Example of Pipelined Execution

F D E M W

RF

1000: add $r2, $r0, $r1
1004: sub $r5, $r3, $r4
1008: sw $r6, 50($r7)
1012: lw $r9, 20($r8)
1016: mul $r12, $r10, $r11

PC = 1028

end
7th cycle

…

$
r
9

=

2
4

$
r
1
2

=

1

…

3
8

Pipeline Schedule

F D E M W

F M W

E M W

F E M W

D E M W

E

D

D

F

D

F

1000:

1004:

1008:

1012:

1016:

F D E M W

RF

3
9

Problem!

F D E M W

RF

1000: addi $r0, $r0, 1
1004: sub $r2, $r0, $r1

PC = 1008

From Register File:
$r0 = 10
$r1 = 4

s
u
b

$
r
2
,

$
r
0
,
 $
r
1

$
r
0

=

1
0

+

1 10 + 1

Instruction 1004 is
getting right now the

(old) value of $r0

Instruction 1000 is
computing right now a

new value for $r0

ERROR!

4
0

Two Main Problems

1. CISC vs. RISC
– Can we build equally well a pipeline for a Complex Instruction Set

Computer as for a Reduced Instruction Set Computer?
– What does that mean?!

2. Instructions are not independent
– Can we execute code correctly?

4
1

RAW, WAR and WAW Dependences

divd $f0, $f1, $f2

addd $f3, $f0, $f4

subd $f4, $f5, $f6

adddi $f0, $f5, 10

• addd has a RAW dependence on divd
• subd has a WAR dependence on addd
• adddi has a WAW dependence on divd

Write ReadAfter

Name
dependencies

True or data
dependencies

4
2

F

Data Hazards

1000:

1004:

1008:

1012:

addi $r0, $r0, 1

sub $r2, $r0, $r1

Causality violation!
We try to use a result before it is produced!

time (cycles)

D E M W
F D E M W

F D E M W
F D E M W

4
3

F

Data Hazards Solved by Stalling the Pipeline

• The natural solution to Data Hazards caused by RAW dependences is to implement
some logic in the processor to stop/repeat the decoding until the required value is
available

• “Stalling” roughly means introducing nop’s in the pipeline
• Due to the rigidity of the pipeline, if one stage is stalled (D in the example), all the

preceding ones must be stalled too (e.g., F)

1000:

1004:

1008:

1012:

addi $r0, $r0, 1

sub $r2, $r0, $r1

D E M W
F D E M W

F D E M W
F D E M W

D D D
F F F

Stalled Pipeline

4
4

F D E M W

RF

PC = 1008

s
u
b

$
r
2
,

$
r
0
,
 $
r
1

$
r
0

=

1
0

+

1 10 + 1

1000: addi $r0, $r0, 1
1004: sub $r2, $r0, $r1

4
5

Detecting

F D E M W

RF

PC = 1008

s
u
b

$
r
2
,

$
r
0
,
 $
r
1

$
r
0

=

1
0

+

1 10 + 1

1000: addi $r0, $r0, 1
1004: sub $r2, $r0, $r1

= = = =

stall

4
6

F D E M W

RF

PC = 1008

s
u
b

$
r
2
,

$
r
0
,
 $
r
1

$
r
0

=

1
0

+

1 10 + 1

1000: addi $r0, $r0, 1
1004: sub $r2, $r0, $r1

4
7

Stalling

F D E M W

RF

PC = 1008

s
u
b

$
r
2
,

$
r
0
,
 $
r
1

$
r
0

=

1
0

+

1 10 + 1

1000: addi $r0, $r0, 1
1004: sub $r2, $r0, $r1

PCNext PC
Logic

stall

En Reg

stall

En nop

0

1

stall

from D
to EReg

4
8

F D E M W

RF

1:

2:

3:

4:

5:

addi $r5, $r1, 1

add $r7, $r5, $r2

xor $r1, $r1, $r2

lw $r9, 0($r7)

subi $r3, $r9, 1

4
9

Data Hazards

F D E M W

RF

1:

2:

3:

4:

5:

addi $r5, $r1, 1

add $r7, $r5, $r2

xor $r1, $r1, $r2

lw $r9, 0($r7)

subi $r3, $r9, 1

F D E M W

F D E M W

F D E M W

F D E M W

F D E M W

D

F

D

F

D

F

Cycles

D

F

D

F DD D

Stalls
(nop’s or “bubbles”)

5
0

Another Solution?

1:
2:
3:
4:
5:

addi $r5, $r1, 1

add $r7, $r5, $r2

xor $r1, $r1, $r2

lw $r9, 0($r7)

subi $r3, $r9, 1

F D E M W

F D E M W

F D E M W

F D E M W

F D E M W

D

F

D

F

D

F

Cycles

D

F

D

F DD D

addi $r5, $r1, 1
nop
nop
nop
add $r7, $r5, $r2
xor $r1, $r1, $r2
nop
nop
lw $r9, 0($r7)
nop
nop
nop
subi $r3, $r9, 1

1:
2:
3:
4:
5:
6:
7:
8:
9:

10:
11:
12:
13:

This solution
needs some
hardware

This solution
needs a good

compiler

5
1

Architecture and Microarchitecture

• Architecture: what is in the ISA contract
– Instructions, registers, etc.

• Microarchitecture: what is specific of an implementation
– Multicycle vs. pipelined, FSM or pipeline structure, etc.

Some of the solutions evoked (reschedule instructions, add nop’s,
delay slots) expose typically microarchitectural aspects (pipeline
structure) in the architecture  the same binary does not run on
different processors!

5
2

WF

Data Hazards Solved by Forwarding Values

1000:

1004:

1008:

1012:

addi $r0, $r0, 1

sub $r2, $r0, $r1

D E M
F D E M W

F D E M W
F D E M W

F D E M W

RF

Forwarding or
bypass path

• Data are available at the right time
but in the wrong place

• Add a forwarding path to bring it
where it needs

• One also needs logic to select (MUX)
the right input to the E stage

5
3

Classic MIPS Pipeline
• 5-stage pipeline with all forwarding paths:

– EE, ME
– WD

• The register-file forwarding (WD) is a special case:
– During W, registers are written in the first half of the cycle
– During D, registers are read in the second half of the cycle

 a register can be correctly written and read in the same cycle
• Not always all forwarding path exist…

F E M W

RF

D

5
4

1:

2:

3:

4:

5:

addi $r5, $r1, 1

add $r7, $r5, $r2

xor $r1, $r1, $r2

lw $r9, 0($r7)

subi $r3, $r9, 1

F E M W

RF

D

5
5

Reduced Data Hazards

F E M W

RF

D

1:

2:

3:

4:

5:

addi $r5, $r1, 1

add $r7, $r5, $r2

xor $r1, $r1, $r2

lw $r9, 0($r7)

sub $r3, $r9, $r1

F D E M W

F D E M W

F D E M W

F D E M W

F D E M W

Cycles

D

–

EE

–

ME
ME ($r9)
WD ($r1)

Used forwarding paths
(if any were missing,

stalls would have been
inserted)

5
6

Structural Hazards

• A structural hazard happens when different instructions compete for the same
resource (e.g., pipeline stage)

• Structural hazards cannot happen in our pipeline
• If we did not stall also instructions following one missing an operand, we could have

structural hazards

F1000:

1004:

1008:

1012:

lw $r0, 10($r1)

sub $r2, $r0, $r1

D E M W
F D E M W

F D E M W
F D E M W

D

Following instruction
not stalled

add $r5, $r3, $r4

Structural hazards

5
7

What if a
caches misses?

Structural Hazards

F D E M W

RF

Instruction
Cache

Data
Cache

Main
Memory

m
is

s

Stall the failing stage
and all preceding ones

Let downstream
stages advance

5
8

Structural Hazards

F D E M W

RF

Instruction
Cache

Data
Cache

Main
Memory

What if both caches
miss at once?

A structural hazard
on main memory

We give priority
to the data cache

(F is stalled, anyway…)

m
is

s

m
is

s

5
9

F

Control Hazards

1000:

1004:

1008:

1012:

beq $r0, $r1, loop

sub $r2, $r0, $r1

Causality violation!
We fetch an instruction before we know which one!

time (cycles)

D E M W
F D E M W

F D E M W
F D E M W

6
0

F

Control Hazards Solved by Stalling the Pipeline

• Similarly to the way we solve data hazards, we can stall the pipeline (F), once it is discovered, after D,
that an instruction was a branch, and this until the branch is resolved

• If, for instance, the correct address of the next instruction is known at the end of the E stage, 2 cycles
are lost every branch

1000:

1004:

1008:

1012:

D E M W
F E M W

D E M W
F D E M

F F D
F

F

Stalled pipeline

beq $r0, $r1, loop

sub $r2, $r0, $r1

After D of 1000, F of 1004 is
invalidated because it could have

been the wrong instruction

6
1

Fetching and Decoding Do Not Do Any Damage

• Fetching or decoding a wrong instruction does not create any problem, provided that the instruction is
not also executed

• If the outcome of a branch is known at the end of the E stage, we can wait until then to conditionally
kill the following two instructions in the pipeline if the branch happens to be taken

• Now 2 cycles are lost only for taken branches and none is lost for nontaken ones

F1000:

1004:

1008:

1012:

D E M W
E M W
D E M W

F D E M

F D
F

F

beq $r0, $r1, loop

sub $r2, $r0, $r1 F D
F

F1000:

1004:

1008:

loop:

D E M W

E M WF D

Ignore the branch until a
decision is made

If the branch was to be taken, replace
the wrongly fetched and decoded

instructions with nops

6
2

F D E M W
F E M W

D E M W
F D E M

F F D
F

F

Cycles

Another Solution?

1:
2:

beq $r0, $r1, loop

sub $r2, $r0, $r1

beq $r0, $r1, loop
nop
nop
sub $r2, $r0, $r1

1:
2:
3:
4:

This solution
needs some
hardware

This solution
needs a good

compiler

6
3

F

Control Hazards Solved by Defining Delay Slots

• Alternatively, we can modify the definition of the architecture and decide that the two instructions
following a branch are executed in any case (branch taken or not) as if they were before

• These instructions after the branches are called delay slots
• Note that code becomes counterintuitive!!!
• MIPS did it as some others, but quite rare in current architectures

1000:

1004:

1008:

1012 or loop:

D E M W
E M W
D E M W

D E M W

F D
F

F

beq $r0, $r1, loop

sub $r2, $r0, $r1

add $r5, $r3, $r4

??? Delay Slots

6
4

Use of Delay Slots

• A simple way of using delay slots is to use them for nop’s—but then it is not better
than stalling the pipeline

• A better idea is to put there instructions which precede the branch and on which the
branch has no dependence

• Suppose an architecture with two delay slots:

sub $r2, $r0, $r7
mul $r1, $r6, $r7
add $r5, $r3, $r4
beq $r0, $r1, loop
nop
nop
lw $r8, 12($r9)

Delay
slots

1000:
1004:
1008:
1012:
1016:
1020:
1024:

mul $r1, $r6, $r7

beq $r0, $r1, loop
sub $r2, $r0, $r7
add $r5, $r3, $r4
lw $r8, 12($r9)

Delay
slots

1000:

1004:
1008:
1012:
1016:

RAW, cannot be moved

6
5

Branch Prediction

• A better strategy is to guess the branch outcome and fetch the
corresponding instruction (either the next instruction or the branch
destination, but not necessarily the former)
– If the guess is correct, no cycle is lost
– If the guess is wrong, what has been fetched and decoded is thrown away

(“squashed”)
• Branch predictors of modern processors are extremely sophisticated:

dynamic predictors learn from previous executions of a branch…
• Complex predictors can be correct up to 95-99% of the time
• The quality of branch predictors has made architectures with delay slots

extremely rare

6
6

Starting Point (Programmer Model)

• Sequential multicycle processor

Cycles

Instructions

1:

2:

3:

6
7

Instruction Level Parallelism?

Instructions

Cycles

?
Standard

6
8

First Step: Pipelining

• Simplest form of Instruction Level Parallelism (ILP): several instructions
are now executed at once

IF ID EX WB
IF ID EX MEM

IF ID EX MEM WB
IF ID

IF ID

Cycles
In

st
ru

ct
io

ns
1:

2:

3:

4:
5:

MEM
WB

EX MEM
EX
WB

6
9

Three Types of Hazards Hinder Pipelining
• Data Hazards (= data dependences)

– Solutions:
• Forwarding paths, wherever possible
• Stalls, in all other cases

• Control Hazards (= jumps and branches)
– Solutions:

• Delay slots, if the architecture allows it
• Branch prediction, to try to do the right thing
• Stalls, if not

• Structural Hazards (= conflicting need for a resource)
– Solutions:

• Rigid pipelines which cannot have structural hazards by construction
• Stalls, otherwise

7
0

References

• Patterson & Hennessy, COD – RISC-V Edition
– Sections 4.6-4.9

	CS-200�Computer Architecture�—�Part 4c. Instruction Level Parallelism�Pipelining
	Pipelining
	Practical Pipelining
	Pipelining for Processors?
	Example: A Simple Multi-Cycle Processor
	Example: A Simple Schedule
	Pipelining the Processor?
	No Hardware Reuse across Stages
	Two Main Problems
	FSM vs. Pipeline
	Adding Instructions to a Multi-Cycle Processor
	Adding Instructions to a Multi-Cycle Processor
	Adding Instructions to a Pipelined Processor
	The Importance of the ISA
	The Importance of the ISA
	The Importance of the ISA
	Reduced Instruction-Set Computer
	Two Main Problems
	Simple 5-Stage MIPS Pipeline
	The Laundry Metaphor
	Two Distinct Memory Interfaces
	What Is in the Pipeline Registers?
	Example of Pipelined Execution
	Example of Pipelined Execution
	Example of Pipelined Execution
	Example of Pipelined Execution
	Example of Pipelined Execution
	Example of Pipelined Execution
	Example of Pipelined Execution
	Example of Pipelined Execution
	Example of Pipelined Execution
	Example of Pipelined Execution
	Example of Pipelined Execution
	Example of Pipelined Execution
	Example of Pipelined Execution
	Example of Pipelined Execution
	Example of Pipelined Execution
	Pipeline Schedule
	Problem!
	Two Main Problems
	RAW, WAR and WAW Dependences
	Data Hazards
	Data Hazards Solved by Stalling the Pipeline
	Slide Number 44
	Detecting
	Slide Number 46
	Stalling
	Slide Number 48
	Data Hazards
	Another Solution?
	Architecture and Microarchitecture
	Data Hazards Solved by Forwarding Values
	Classic MIPS Pipeline
	Slide Number 54
	Reduced Data Hazards
	Structural Hazards
	Structural Hazards
	Structural Hazards
	Control Hazards
	Control Hazards Solved by Stalling the Pipeline
	Fetching and Decoding Do Not Do Any Damage
	Another Solution?
	Control Hazards Solved by Defining Delay Slots
	Use of Delay Slots
	Branch Prediction
	Starting Point (Programmer Model)
	Instruction Level Parallelism?
	First Step: Pipelining
	Three Types of Hazards Hinder Pipelining
	References

