CS-200
Computer Architecture

Part 4c. Instruction Level Parallelism
Pipelining

Paolo lenne

<paolo.ienne@epfl.ch>

Pipeline
Registers

a
EEEEN
Q

o

a
am
Q

- f2

Nbito.2 o

[=)]
mEm
[e]

-t

t t+1 t+2 t+3 t+4 t+5

stage stage stage
| 1 2 3

t t+1

. . stage stage stage

[i+1 1 2 3
. . stage stage stage
i+1 | I i+2 1 2 3

stage stage stage

i+3 1 2 3

Practical Pipelining

But flip-flops introduce a
delay of their own...

’ But one might not be able
to split evenly the circuit...

|deally, /

T;' = TCLK,comb/N

and

T

112

T

CLK, pipe

e Latency A,,=N-max(T +T.

pipe i=0..N—1

:N.TCLK,pipe :N/fp >ﬂ’0rig

ipe

* Throughput ¢, =1/ max (T, +Tz) = f,..

i=0.N-1

Pipelining for Processors?

* Pipelining useful only if the activity in object needs to be
repeated many time
— We have plenty of instructions to execute!

* Pipelining needs to split the single activity in object into many

subactivities
— We have a good logical split into fetch, decode, execute, etc.

Example: A Simple Multi-Cycle Processor

o

Example: A Simple Schedule

FETCH

Il F D E Get the instruction
2| F D E to execute from the
instruction memory

DECODE
Understand/decode
the instruction and get
ready for execution

Decoder 0x00000000 - 0x00D003FF 16

4 0x00000400

EXECUTE
Perform the required
operation (including

0x00000000 - 0xDO0D03FF

—_ = accessing data memory in
32 o - 15..0 Dataln D
evident J 1T 2a5.0) case of loads and stores)

1::-j=-3-2.-"/(9--2) Addr D

Pipelining the Processor?

Pipeline
/ / Registers

F > > D > > E

stage 1 stage 2 stage 3
Datapath

t t+1 t+2 t+3 t+4 t+5

i F D E
t+1 t+2 t+3 t+4 t+5
D E i+1 F D E
F D E i+2 F D E

i+3 F|{D|E

No Hardware Reuse across Stages

* |n a multicycle processor, some hardware components may be
shared across states:

— FETCH typically requires an adder to increment the program counter
— EXECUTE naturally needs an ALU

— They are never used at the same time, so the ALU can be used to
increment the program counter

* |n a pipelined processor, there cannot be sharing across stages,
in general:

— All stages active all the time!

— Hardware needs to be replicated where appropriate

Two Main Problems

-

(1. CISC vs. RISC

Can we build equally well a pipeline for a Complex Instruction Set
Computer as for a Reduced Instruction Set Computer?

What does that mean?!

~N

2. Instructions are not independent

Can we execute code correctly?

FSM vs. Pipeline

* Any path through our FSM represents the sequence of
necessary steps for the execution of an instruction

* The ordered path through the pipeline is the sequence of all
possible steps for the execution of any instruction

Adding Instructions to a Multi-Cycle Processor

How do we
support add?

If the sequence of steps to execute is

the same (fetch the instruction, read

registers, use the ALU, save result in

the register), we just need to an ALU
that can perform additions

Adding Instructions to a Multi-Cycle Processor

How do we
support 1w?

The sequence of steps
to execute is not the
same (compute address
and access memory) so
we add new steps and a
(partially) new path

Adding Instructions to a Pipelined Processor

(xor and add

Fetch > > Decode > > Execute > > Writeback

How do we
support 1w?

We need to @
accommodate the steps

S|] .)] Latency of add
compute address and \ is now five cycles!
access memory

Writeback

Fetch Decode Execute

[How?!] | | j

The Importance of the ISA

Imagine that we want to have an instruction

sub 8(t4), o(tl), o(t2)

H_J
[A CISC instruction!] K
/4‘ h Y g Read the value in memory
Complex at the address t2 + 0
Instruction-Set
Computer

Subtract the value in memory at the address t2 + ©
from the value in memory at the address t1 + ©
and store the result in memory at the address t4 + 8

The Importance of the ISA

Imagine that we want to have an instruction

—
sub 8(t4), @(tl), o(t2)

[A—
s -

AL AL AL
f) f)

Add

A2
\ 4
>
o
o
A2
\ 4

> Add M > Load > >]Execute Store > >1 Writbk.

A2

> Load

A2
\ 4
A2
\

Decode

A2
\

Fetch

| B | | S B E—

The Importance of the ISA

Imagine that we want to have an instruction

sub 8(t4), o(tl), o(t2)

A2
A2

Decode

A2
\

Fetch

S e =

sub t4, ti1, t2

Latency 10
L instead of 4!

Reduced Instruction-Set Computer

* Instead of imposing a huge penalty to every simple instruction by making
complex instructions possible, let’s have only similarly simple
instructions and build our programs with those:

Iw t3, o(tl)
Iw t5, 0(t2)
sub t3, t3, t5
sw t3, 8(t4)

sub 8(t4), o(t1l), o(t2)

* It turns out that it is not the only way to go, but it is a good one and we
will follow it...

Two Main Problems

-

(1. CISC vs. RISC

Can we build equally well a pipeline for a Complex Instruction Set
Computer as for a Reduced Instruction Set Computer?

What does that mean?!

~

2. Instructions are not independent

Can we execute code correctly?

Simple 5-Stage MIPS Pipeline

srserrnnna RF

o o o o o o o o
» » » » » » » »

~ \

FETCH: MEMORY:

get the instruction access the data memory,

to execute from the if needed (only for loads

instruction memory DECODE: and stores)
understand/decode EXECUTE: WRITEBACK:
the instruction and perform the required write the result of the operation, if

obtain arguments operation in the ALU any, to the register file

from the register file (including address calculations (either produced from the ALU or

received from the data memory)

for loads and stores)

The Laundry Metaphor

6 PM vi 8 9 10 11 12 1 2 AM

Tim
Task ©
order 8
i
A 4
s
. B 9
Sequential B
- 3]
c
o
D I
L J 05
c
(@]
i
Q
6 PM i ©
N R E— g =
€
A B C =
o
9
(@R
©
©
n <

Pipelined

Parallel [O)QJQ > @ it th
: . ¢ if there are many
(if subtasks are : =1 C O . tasks to repeat)

independent) . S 5 %l

Two Distinct Memory Interfaces

MIPS Processor
. RF
D E W

Operating at once!

Instruction Data
Cache Cache

™ wain o

Memory

What Is in the Pipeline Registers?

ALU control bits
e RFE o,

F

What has just been fetched (/)

5-bit number of the
destination register,
if any

E M —f— W

— the instruction register

Two 32-bit operands .
just read from the register file, 32-bit ALU result
if any

Example of Pipelined Execution

before

execution

PC = 1000
F

n

RF

Empty pipeline: all stages at nop (no operation)

1000:
1004:
1008:
1012:
1016:

add
sub
SW
lw
mul

$r2,
$r5,
$r6,
$r9,

$r0, $Srl
$r3, Sr4
50($xr7)
20 ($r8)

$r12, $rl0, $rll

Example of Pipelined Execution

during ereenreeeeasenaneeeees

1st cycle

PC = 1000 Py
Q, Q,
F 2
"‘ /
From instruction memory:
add $r2, $r0, Sril

n

1000: add
1004: sub
1008: sw
1012: 1w
1016: mul

RFE
/ /
Q, Q,
o s
/ /
$r2, $r0/ $r1
$r5, $r3/ $r4
$r6, 50(S$r7)
$r9, 20(S5r8)

$r12, $rl0, $rll

Example of Pipelined Execution

end eeenreeeeasenseassraresseane) oY =S OSSR :
1st cycle
o
“ :
w :
PC=1004 s v
Y]
v Q, Q, Q,
F > D r— E — M s W
W
v
g
o]
©
1000: add $r2, $r0, $Srl
1004: sub $r5, $r3, $r4
1008: sw $r6, 50(S$r7)
1012: 1w $r9, 20(S$r8)

1016: mul $rl2, $rl0, $rll

Example of Pipelined Execution

during From Register File:
nd $Sr0o:=15
2nd cycle Sr1 = 25
i
~
>
PC = 1004 S l
¥
>
F — D
(4]
~
>
T :
o)
(V]

From instruction memory:
sub $r5, $r3, Sr4

1000:
1004:
1008:
1012:
1016:

add
sub
SW
lw
mul

......... RF
/ /
Q,
o]
/
$r2, $r0, Srl
$r5, $r3, S$r4
$r6, 50($r7)
$r9, 20($r8)
$r12, $rl0, $rll

Example of Pipelined Execution

end eeenreeeeasenseassraresseane) oY =S OSSR :
2" cycle
.
Y :
w : 10
. AN
PC = 1008 H N
o 0 o, Q
F =~ D -~ E = M $— w
o :
.g v
()]
1000: add $r2, $r0, $Srl
1004: sub $r5, $r3, $r4
1008: sw $r6, 50(S$r7)
1012: 1w $r9, 20(S$r8)

1016: mul $rl2, $rl0, $rll

Example of Pipelined Execution

during ~From Register File: | RE | .
rd $r3 =17 :
3rd cycle Sed = 4 :
<
H :
0 10 :
Pc=1008 [l © 15+ 25 / i/
N NN To) Q, Q,
F g '{5 g D ; E c M c %
o ~ / /
)]
From instruction memory:
sw $r6, 50($r7)
1000: add $r2, $r0, $Srl
1004: sub $r5, $r3, S$r4
1008: sw $r6, 50(S$r7)
1012: 1w $r9, 20(S$r8)

1016: mul $rl2, $rl0, $rll

Example of Pipelined Execution

end eeenreeeeasenseassraresseane) oY =S OSSR :
3rd cycle
5 .
PC=1012 & H | o
o <<
0 o | 2,
F —}— D = E M —l— w
: 3
wr '-8 wr
2 oy
()]
1000: add $r2, $r0, $Srl
1004: sub $r5, $r3, $r4
1008: sw $r6, 50(S$r7)
1012: 1w $r9, 20(S$r8)

1016: mul $rl2, $rl0, $rll

Example of Pipelined Execution

during ~FromRegister File: | RE e .
4th cycle sr6. = :
Sr7:=13
o -
PC=1012 [o 17-4 Ko / /
1°. | IR s
F —f— D —f— E . -
@ 0 w 7/ 4
()]
From instruction memory:
1w $r9, 20($r8)
1000: add $r2, $r0, $Srl
1004: sub $r5, $r3, S$r4
1008: sw $r6, 50(S$r7)
1012: 1w $r9, 20(S$r8)

1016: mul $rl2, $rl0, $rll

Example of Pipelined Execution

end eeenreeeeasenseassraresseane) oY =S OSSR :
4th cycle
_ L,
3 T
PC=1016 « v I ™ o
o — i <
(§] o
F > D E — M W
o + To) o
¥ N
ur < wr wr
-
ks S
1000: add $r2, $r0, $Srl
1004: sub $r5, $r3, $r4
1008: sw $r6, 50(S$r7)
1012: 1w $r9, 20(5r8)

1016: mul $rl2, $rl0, $rll

Example of Pipelined Execution

during From Register File: -+ RF To-Register File:

5th cycle $r8: = 23 $r2 = 40
—~ n
GH) <

PC =1016 fJ= 1 n 14+ 50 |, . = T
8 S‘ i <

F —b— D E L)’(W

a H S
o or o>
ks

M[14 +

i

From instruction memory:
mul $rl2, $rl0, $rll

1000: add $r2, $r0, $Srl
1004: sub $r5, $r3, S$r4
1008: sw $r6, 50(S$r7)
1012: 1w $r9, 20(S$r8)

1016: mul $rl2, $rl0, $rll

Example of Pipelined Execution

end
5th cycle
i
i
¥
or
PC = 1020 o
i
F o5
N
i
“
L7y J
3
&

1000:
1004:
1008:
1012:
1016:

Sr9 = M{23 + 20]

add
sub
SW
lw
mul

reeeeres e sneaeend oY =S OSSR
M 2w
= o

$r2, $r0, $Srl
$r5, $r3, $r4
$r6, 50(S$r7)
$r9, 20(S$r8)
$rl2, $rl0, $rll

Example of Pipelined Execution

1 From Register File: . .
durlng $rlg = 1 RF TO Reglster Flle:
6th cycle 711 = 2 $r5 = 13
o :
L5 —
@ S
PC=1020 J= l + 23+20 Q=2 o T
F —}~ D —f— E M W
(\; = < 7o)
ﬁ] E' {sr')'-
T) o =
- a
3
- dat
- : : To data memory:
From instruction memory: o mer Y
Data = 45
write
1000: add $r2, $r0, $Srl
1004: sub $r5, $r3, S$r4
1008: sw $r6, 50(S$r7)
1012: 1w $r9, 20(S$r8)

1016: mul $rl2, $rl0, $rll

Example of Pipelined Execution

end
6th cycle

PC = 1024

F

(9]
»
—
N
—
H
o>
1000: add
1004: sub
1008: sw
1012: 1w
1016: mul

srserrnnna RF
— M = W

$r2, $r0, $Srl
$r5, $r3, $r4
$r6, 50(S$r7)
$r9, 20(S$r8)
$rl2, $rl0, $rll

Example of Pipelined Execution

during From Register File:

7t cycle :
PC = 1024 1
F —}— D
From instruction memory:
1000:
1004:
1008:
1012:
101e6:

2

1l x

Srl2

add
sub
SW
lw
mul

F{F:

$r2,
$r5,
$r6,
$r9,
$rl2,

$r9 =| M[43]
=<
nép

From data memory:
Addr = 43
read
- Data = 24

$r0, Srl
$r3, $r4
50 ($r7)

20 ($r8)
$rl0, $rill

Example of Pipelined Execution

end eeenreeeeasenseassraresseane) oY =S OSSR :
7th cycle
PC = 1028 H — <
: ; I o
F > > D > > E > > M o"x > W
b H
or oy
1000: add $r2, $r0, $Srl
1004: sub $r5, $r3, $r4
1008: sw $r6, 50(S$r7)
1012: 1w $r9, 20(S$r8)

1016: mul $rl2, $rl0, $rll

Pipeline Schedule

. RF
D E M W

1000: |F|D|E|M|W

1004: FID E|M|W

1008: D E|MW
1012: FID E|M|W
1016: FID E|MW

Problem!

From Register File:
Spo = 10 T RFE e
$rl = :
L
H
o i
PC = 1008 S l + 10+ 1
- 2
F > N~ > D I E M > > W
- ;
Q 3
o ‘\\\
Instruction 1000 is

computing right now a
new value for $r0

Instruction 1004 is
getting right now the
(old) value of $r0

1000: addi Sr0, s$ro, 1
1004: sub $r2, Sr0, sri

ERROR!

Two Main Problems

1. CISCvs. RISC

Can we build equally well a pipeline for a Complex Instruction Set
Computer as for a Reduced Instruction Set Computer?

What does that mean?!

-

.

2.

Instructions are not independent

Can we execute code correctly?

Write After Read

N)/
RAW, WAR and WAW Dependences

divd $FfO, $f1, S$f2
addd $£;7‘$f0 $£4
subd $f4f $f6
adddi $f0, $£5, 10

True or data
dependencies

e addd has a RAW dependence on divd }(J Name
* subd hasa WAR dependence on addd l ____ dependencies

¢
e adddi hasa WAW dependence on divd

Data Hazards

> time (cycles)

1000:| E D | E | M| we addi $r0, $r0, 1
1004: F.ﬁ{f/l/ W sub $r2, $r0, $rl
1008: FIDE W

1012: FIDE MW

Causality violation!
We try to use a result before it is produced!

Data Hazards Solved by Stalling the Pipeline

1000: | F I DIEIM Wi addi $r§r0, 1
1004: FIDIDI DeD
F

1008: F FIF D E MW

1012: StaIIedFipeIine F D E M W

E M W sub $r2, $r0, Srl

The natural solution to Data Hazards caused by RAW dependences is to implement

some logic in the processor to stop/repeat the decoding until the required value is
available

“Stalling” roughly means introducing nop’s in the pipeline

Due to the rigidity of the pipeline, if one stage is stalled (D in the example), all the
preceding ones must be stalled too (e.g., F)

1000: addi Sr0, s$ro, 1
1004: sub $r2, Sr0, sri

srserrnnna F{F: E

PC = 1008

$r0,

Srl
10 + 1
—t
o
+
—t

v
v

m
=<
=

F:

sub $r2,
r0

1000: addi Sr0, s$ro, 1
1004: sub $r2, Sr0, sri

Detecting

. RF

PC = 1008
F

$ro[= L0 + 1
m
=<

stall

1000: addi Sr0, s$ro, 1
1004: sub $r2, Sr0, sri

srserrnnna F{F: E

PC = 1008

$r0,

Srl
10 + 1
—t
o
+
—t

v
v

m
=<
=

F:

sub $r2,
r0

1000: addi Sr0, s$ro, 1
1004: sub $r2, Sr0, sri

srserrnnna RF

PC = 1008

O
$r0 = [10 + 1
m
=<

=Nextec| [pc| \' Y
ﬁ o Ll
—>| Logic En —>|Reg fromD —>{ 0
Reg —>toE
stall En nop —|1
stall stall

A S

addi
add
Xor
1w

subi

Sr5, Srl, 1
N

Sr7, S$r5, $r2

$r£>\€f1, Sr2

$r9, 0($r7)
N

Sr3, S$r9, 1

RF

O

v

\ 4

\ 4

\ 4

LA - -

Data Hazards

Cycles'
addi $r5&$r1, 1 FIDI EIM|W
add $r7, $r5, $r2 FIDIDIDYDIE|M|W
Xor $rl, \$rl, $r2 FIF|F|F|D|E|M|W
1w $r9k0($r7) FID DYD E|M|W
subi $r3, $r9, 1 —>» F|F|F|D/DIDYD/ E|M|W
A
Stalls
(nop’s or “bubbles”) . 0] = S — .

Another Solution?

This solution This solution
needs some needs a good

1: addi Sr5, S$rl, 1)
N hardware compiler
2: add $Sr7, $r5, $r2 1- addi $r5, $r1, 1
3: xor $r1,\§:1, Sr2 2: nop
4: 1w $r9, 0($r7) 3: nop
. ~ 4: nop
5: subi $Sr3, $r9, 1 5- add $r7, $r5, $r2
6: XxXor $rl, Srl, $r2
/. nop
> 8: nop
EIM|W / Cycles 9: 1w $r9, 0($xr7)
10: nop
FIDIDIDIDIE|M|W 11: nop
DIE|M|W 12: nop
FIF|IF|ID D DYD|E|{M|W

Architecture and Microarchitecture

 Architecture: what is in the ISA contract

— Instructions, registers, etc.

* Microarchitecture: what is specific of an implementation
— Multicycle vs. pipelined, FSM or pipeline structure, etc.

Some of the solutions evoked (reschedule instructions, add nop’s,
delay slots) expose typically microarchitectural aspects (pipeline
structure) in the architecture - the same binary does not run on
different processors!

Data Hazards Solved by Forwarding Values

1000:| F |D | E®M |W | addi $r0, $r0, 1 * Data are available at the right time
e \ but in the wrong place
1004: F DOE | M Wsub sr2, $x0, $r1 o Add a forwarding path to bring it
. where it needs
1008: F D E W * One also needs logic to select (MUX)
1012 FIDIEIMIW the right input to the E stage
................................. R =] = S —————— ;
iy
F D M T— W

Forwarding or
bypass path

Classic MIPS Pipeline

* 5-stage pipeline with all forwarding paths:
— E2E, M>E
— W->D
* The register-file forwarding (W->D) is a special case:
— During W, registers are written in the first half of the cycle
— During D, registers are read in the second half of the cycle
—> a register can be correctly written and read in the same cycle

* Not always all forwarding path exist...

frerurerenrnnerneasenseaseane) RFE o, :

I'I'I
<
N

-n

A S

addi
add
Xor
1w

subi

Sr5, Srl, 1
N

Sr7, S$r5, $r2

$r1,\{r_‘1 , Sr2

$r9, 0($xr7)
N

Sr3, S$r9, 1

RF

LA - -

addi
add
Xor
1w

sub

Reduced Data Hazards

$r5, Srl, 1 F|D
~N

Cydeg

$r7, $r5, $r2 F

$r1 \$rl, $r2

$r9,\0~«${7‘)
N
$r3, $r9, Sril

MW —
EIM{W E->E
DI EIM VIV -
F|DYE It W M-E
M-E ($9)
F|D|DYE MW w3p e
................................ . Used forwarding paths
RF f

(if any were missing,
stalls would have been
inserted)

Structural Hazards

A structural hazard happens when different instructions compete for the same
resource (e.g., pipeline stage)

Structural hazards cannot happen in our pipeline

If we did not stall also instructions following one missing an operand, we could have
structural hazards

1000: | F I DI E| MW lw $r0, 10($rl)
1004: F D/ E

w\> sub $r2, $r0, Sril

< <

add $r5, $r3, $r4

1008: F\Q E J
1012 / FID[E|M VVW\

Following instruction Structural hazards
not stalled

StrUCtu ral Haza rds Stall the failing stage

and all preceding ones

What if a
i P
caches Mmisses: RF
A 4
[F > > D > > E > >
A
A 4

Instruction Data Let downstream

Cache Cache stages advance

™ wain o

Memory

Structural Hazards

We give priority
to the data cache
(F is stalled, anyway...)

What if both caches
missatonce? |] RF

A structural hazard
on main memory

_
Instruction Data
Cache Cache
()
\ Main / <
Memory
_ Y,

1000:
1004:
1008:

1012:

Control Hazards

> time (cycles)

F D ‘M Y beq $r0, $rl, loop
flé}D E MW sub $r2, $r0, $rl
FIDE W
FID EMW

Causality violation!
We fetch an instruction before we know which one!

Control Hazards Solved by Stalling the Pipeline

1000: | F|D | E®M |W beq $r0, $rl, loop
1004: F I FeF D E| MW sub $r2, $r0, $rl
1008: FID E MW

1012: FIF D E|M

After D of 1000, F of 1004 is
invalidated because it could have Stalled pipeline
been the wrong instruction

Similarly to the way we solve data hazards, we can stall the pipeline (F), once it is discovered, after D,
that an instruction was a branch, and this until the branch is resolved

If, for instance, the correct address of the next instruction is known at the end of the E stage, 2 cycles
are lost every branch

Fetching and Decoding Do Not Do Any Damage

1000:| F D | E®M |W beq $r0, $rl, loop 1000: | F|D | E®M |W

1004: F E MW sub $r2, $r0, $rl 1004: F|D

1008: D EMW 1008: F

1012: FIFID E|M loop: FIDE MW

X

If the branch was to be taken, replace
the wrongly fetched and decoded
instructions with nops

Ignore the branch until a
decision is made

* Fetching or decoding a wrong instruction does not create any problem, provided that the instruction is
not also executed

e |If the outcome of a branch is known at the end of the E stage, we can wait until then to conditionally
kill the following two instructions in the pipeline if the branch happens to be taken

* Now 2 cycles are lost only for taken branches and none is lost for nontaken ones

Another Solution?

This solution This solution
needs some needs a good

hardware compiler
1: beq $r0, $rl, loop
2: sub $Sr2, S$r0, Sril
1: beq $r0, $rl, loop
2: nop
> 3: nop
Cycles 4: sub $r2, $r0, S$ril
F E MW
4
F FID|E W
F DE MW
F D E M

Control Hazards Solved by Defining Delay Slots

1000: | F | D W beq $r0, $rl, loop

1004: F MW sub $r2, $r0, $rl

1008: EIMW add $r5, $r3, $r4 (j
1012 or loop: DIEIMIW 229

Delay Slots

Alternatively, we can modify the definition of the architecture and decide that the two instructions
following a branch are executed in any case (branch taken or not) as if they were before

These instructions after the branches are called delay slots
Note that code becomes counterintuitive!!l

MIPS did it as some others, but quite rare in current architectures

Use of Delay Slots

* Asimple way of using delay slots is to use them for nop’s—but then it is not better
than stalling the pipeline

* Abetterideais to put there instructions which precede the branch and on which the
branch has no dependence

e Suppose an architecture with two delay slots:

1000: sub $r2, $r0, S$r7

1004: mul rl, Sr6, S$r7 1000: mul rl, Sr6, S$r7

1008: add $r5, $r3, $r4 RAW, cannot be moved
1012: beq $r0, $rl, loop 1004: beqg $r0, $rl, loop

1016: nop } Delay 1008: sub $r2, $r0, S$r7 } Delay
1020: nop slots 1012: add $r5, $r3, S$r4 slots

1024: 1w $r8, 12(S$r9) 1016: 1w $r8, 12($r9)

Branch Prediction

* A better strategy is to guess the branch outcome and fetch the
corresponding instruction (either the next instruction or the branch

destination, but not necessarily the former)

— If the guess is correct, no cycle is lost
— If the guess is wrong, what has been fetched and decoded is thrown away

(“squashed”)
* Branch predictors of modern processors are extremely sophisticated:
dynamic predictors learn from previous executions of a branch...

 Complex predictors can be correct up to 95-99% of the time
* The quality of branch predictors has made architectures with delay slots
extremely rare

Starting Point (Programmer Model)

* Sequential multicycle processor

i Cycles

y Instructions

Instruction Level Parallelism?

l CycIe:s
Instructions

Py

1 1
Standard

First Step: Pipelining

[1F | ID | EX [MEM| WB Cycles
. 2 IF| D EX [MEM| WB

S 3| 1F 1D EX |MEM| wB

S 4| IF ID EX |MEM| WB
E 5:{ IF | ID | EX

e Simplest form of Instruction Level Parallelism (ILP): several instructions
are now executed at once

Three Types of Hazards Hinder Pipelining

* Data Hazards (= data dependences)

— Solutions:
* Forwarding paths, wherever possible
e Stalls, in all other cases

e Control Hazards (= jumps and branches)

— Solutions:
* Delay slots, if the architecture allows it
* Branch prediction, to try to do the right thing
* Stalls, if not

e Structural Hazards (= conflicting need for a resource)

— Solutions:
* Rigid pipelines which cannot have structural hazards by construction
e Stalls, otherwise

References

e Patterson & Hennessy, COD — RISC-V Edition
— Sections 4.6-4.9

	CS-200�Computer Architecture�—�Part 4c. Instruction Level Parallelism�Pipelining
	Pipelining
	Practical Pipelining
	Pipelining for Processors?
	Example: A Simple Multi-Cycle Processor
	Example: A Simple Schedule
	Pipelining the Processor?
	No Hardware Reuse across Stages
	Two Main Problems
	FSM vs. Pipeline
	Adding Instructions to a Multi-Cycle Processor
	Adding Instructions to a Multi-Cycle Processor
	Adding Instructions to a Pipelined Processor
	The Importance of the ISA
	The Importance of the ISA
	The Importance of the ISA
	Reduced Instruction-Set Computer
	Two Main Problems
	Simple 5-Stage MIPS Pipeline
	The Laundry Metaphor
	Two Distinct Memory Interfaces
	What Is in the Pipeline Registers?
	Example of Pipelined Execution
	Example of Pipelined Execution
	Example of Pipelined Execution
	Example of Pipelined Execution
	Example of Pipelined Execution
	Example of Pipelined Execution
	Example of Pipelined Execution
	Example of Pipelined Execution
	Example of Pipelined Execution
	Example of Pipelined Execution
	Example of Pipelined Execution
	Example of Pipelined Execution
	Example of Pipelined Execution
	Example of Pipelined Execution
	Example of Pipelined Execution
	Pipeline Schedule
	Problem!
	Two Main Problems
	RAW, WAR and WAW Dependences
	Data Hazards
	Data Hazards Solved by Stalling the Pipeline
	Slide Number 44
	Detecting
	Slide Number 46
	Stalling
	Slide Number 48
	Data Hazards
	Another Solution?
	Architecture and Microarchitecture
	Data Hazards Solved by Forwarding Values
	Classic MIPS Pipeline
	Slide Number 54
	Reduced Data Hazards
	Structural Hazards
	Structural Hazards
	Structural Hazards
	Control Hazards
	Control Hazards Solved by Stalling the Pipeline
	Fetching and Decoding Do Not Do Any Damage
	Another Solution?
	Control Hazards Solved by Defining Delay Slots
	Use of Delay Slots
	Branch Prediction
	Starting Point (Programmer Model)
	Instruction Level Parallelism?
	First Step: Pipelining
	Three Types of Hazards Hinder Pipelining
	References

